
Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

227 

Stars and Zigzags

14 Stars and Zigzags 

14.1 Introduction

his is the last chapter in this part of the book. In it, I want to describe a rather diferent approach to the problem of 

implementing the TR model on disk: more speciically, to the problem of minimizing disk seeks. Note immediately, 

therefore, that the approach in question can be regarded in part as an alternative to ile banding as discussed in Chapter 

13—but only in part, because in fact ile banding can be used in combination with the approach to be described, as we’ll 

see in Section 14.4. Note too that, as with the discussion of ile banding in Chapter 13, we’re primarily concerned here 

with how to deal with the “large ile” that remains ater ile factoring has been used to get all of the “small iles” into 

memory. But irst things irst. 

As we know, the basic problem with TR on the disk is that if we’re not careful, the zigzags can splay out all over the disk. 

Well, if the splay problem is caused by the zigzags, then let’s get rid of the zigzags! Recall from Chapter 5 (Section 5.8) 

that the linkage information that lets us reconstruct records doesn’t have to be implemented as zigzags speciically—other 

possibilities exist, with (of course) diferent performance characteristics. he approach to be described in this chapter 

exploits this idea; essentially, what it does is replace the zigzags by a diferent kind of structure called a star. 

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE฀

AXA GLOBAL GRADUATE฀
PROGRAM 2015฀

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0


Download free eBooks at bookboon.com

Go Faster!

228 

Stars and Zigzags

Let me illustrate this idea right away. Fig. 14.1 shows the Field Values Table and corresponding Record Reconstruction 

Table from Figs. 13.2 and 13.3 in Chapter 13—except that, for pedagogic reasons, I’ve shown the Field Values Table in 

uncondensed form. Fig. 14.2 then highlights one particular zigzag from Fig. 14.1 (actually the one for part P7), and Fig. 

14.3 shows what happens if we replace that zigzag by a star. 

Fig. 14.1: Uncondensed Field Values Table and corresponding Record Reconstruction Table

 Fig. 14.2: Zigzag for part P7

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

229 

Stars and Zigzags

Fig. 14.3: Star for part P7 (with P# the core)

As you can see, where Fig. 14.2 has a ring of pointers (implemented within the Record Reconstruction Table and conceptually 

superimposed on the Field Values Table), Fig. 14.3 has a star of pointers instead. Cell [7,1], which corresponds to the P# 

value P7, serves as the center or core of that star. hree pointers emanate from that core and point to cells [6,2], [8,3], 

and [4,4], respectively; those cells correspond to the PNAME value Nut, the WEIGHT value 19.0, and the CC# value cc1, 

respectively. hose three pointers, which (as Fig. 14.3 indicates) are all two-way and can therefore be traversed in either 

direction, serve as the spokes or rays of the star. 

Now, the star in the igure clearly does support reconstruction of the record for the part in question (part P7). To be speciic: 

a) If we start at the core, we can simply follow the three spoke pointers outward to obtain the other three ield 

values. 

b) If we start at any other point, we can follow the corresponding spoke pointer inward to the core and then 

proceed as under a) above—with the exception that, if we get to the core by following spoke pointer sp 

inward, then of course there’s no need to follow that particular spoke sp outward again. Note: As a matter of 

fact, we never need to follow a spoke outward from the core within the Record Reconstruction Table as such; 

we only need to be able to go from the core outward to cells within the Field Values Table. 

Now, you might have already realized that, for any given zigzag, there are several distinct but equivalent stars—it just 

depends on which ield we choose as the core. I’ll return to this point in Section 14.3. You might also have realized that 

the record reconstruction algorithm as just outlined displays asymmetric performance—access via the core ield will be 

faster than access via any other ield, because stars (unlike zigzags) are an inherently asymmetric structure—and I’ll return 

to this point in Section 14.5. 

he structure of the chapter is as follows. Following this introductory section, Section 14.2 gives a simple example to 

illustrate the basic ideas behind star structures. Section 14.3 elaborates on and generalizes that example. Section 14.4 

shows how the ideas from the irst three sections work on the disk (those previous sections are principally concerned with 

a memory-based implementation only). Finally, Section 14.5 discusses the use of controlled redundancy in connection 

with star structures. 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

230 

Stars and Zigzags

14.2 A Simple Example

As in the previous chapter, the basic problem we’re trying to deal with is how to get the best possible performance out of 

the “large” Record Reconstruction Table in a disk-based system. So I’ll base my discussions on the same running example 

as in that previous chapter; to be speciic, I’ll assume once again that we’ve factored the parts ile into large and small 

iles that look like this: 

Large ile Small ile 
P# CC#

PNAME COLOR

WEIGHT CITY

CC# 

However, we’re interested here in the large ile exclusively. Fig. 14.4 shows a sample value for that ile (extracted from Fig. 

13.1 in Chapter 13). And we’ve already seen a Field Values Table and a zigzag-based Record Reconstruction Table for that 

ile in Fig. 14.1 above. Note: While the ile shown in Fig. 14.4 is obviously not very large, let me remind you that we’re 

really supposed to be dealing with iles of millions or even billions of records, and the data in those iles isn’t supposed 

to display any “statistical clumpiness” at all. 

Fig. 14.4: Sample ile 

Now, despite the fact that we’re really supposed to be talking about a disk implementation, it’s convenient to pretend for 

the time being that everything’s in memory, and I’ll adopt that pretense until further notice. So how do we proceed? Well, 

since (as we’ve already seen) stars are asymmetric, the irst thing we have to do is decide what the core’s going to be; in 

other words, we irst have to choose a core ield (much as we had to choose a characteristic ield in connection with with 

banding in the previous chapter).1 Suppose we choose ield P#. hen Fig. 14.5 shows a corresponding star-based Record 

Reconstruction Table for the ile of Fig. 14.4. Note: From this point forward, for convenience, I’ll abbreviate the term 

“star-based Record Reconstruction Table” to just star table, and similarly for zigzag table. 

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

231 

Stars and Zigzags

Fig. 14.5: Star-based Record Reconstruction Table for the ile of Fig. 14.4 (with P# the core)

In order to explain the star table of Fig. 14.5, let’s go back for a moment to the zigzag table of Fig. 14.1. Consider the 

zigzag for (say) part P7, which—as Fig. 14.2 shows graphically—looks like this: 

[7,1], [6,2], [8,3], [4,4] 

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3


Download free eBooks at bookboon.com

Go Faster!

232 

Stars and Zigzags

In a star analog of this zigzag, therefore, the core cell [7,1] will contain the pointer triple 6-8-4 (these are the outward 

portions of the spokes) and cells [6,2], [8,3], and [4,4] will each contain a 7 (these are the inward portions of the spokes). 

And similarly, of course, for all of the other stars in the table. Note: I’ve expanded the heading of column P# in Fig. 14.5 

to show which pointers are which. To be speciic, in the triple n-w-c, n is the PNAME (name) pointer, w is the WEIGHT 

pointer, and c is the CC# pointer. 

Observe, incidentally, that it’s a consequence of the way the star table in the example is deined that: 

a) he irst “subcolumn” within column P# of the star table—the one for PNAME, labeled n in the igure—is 

identical to column P# of the zigzag table (why, exactly?); 

b) Column CC# of the star table (the last column) is identical to column CC# of the zigzag table (again, why 

exactly?). 

Now let’s consider how the star table of Fig. 14.5 might be used to implement queries. Consider the following simple example: 

SELECT DISTINCT P.P#, P.WEIGHT

FROM P 

ORDER BY P# ; 

his query refers to relation P, but of course it can be implemented by accessing the large ile only—we2 don’t need to 

touch the small ile at all. (his is a generic observation, and I won’t bother to repeat it in subsequent examples.) So what 

we have to do is this: 

•	 Traverse column P# of the star table top to bottom to obtain the result in the desired ordering. 

•	 he irst cell encountered, cell [1,1], corresponds to cell [1,1] in the Field Values Table, which (as Fig. 14.1 

shows) contains the part number P1. 

•	 hat same irst cell in column P# of the star table contains the pointer triple 5-1-1. he irst pointer in this 

triple corresponds to a part name, the second to a weight, and the third to a CC# value. However, the query 

isn’t interested in part names or CC# values, so we can go just to the WEIGHT cell in the Field Values 

Table—which is to say cell [1,3]—to obtain the desired weight value. he irst result record has now been 

constructed. 

•	 All other result records are constructed analogously. 

Note: If the query had speciied ORDER BY WEIGHT instead of ORDER BY P#, we would have accessed the star table 

by column WEIGHT instead of column P#. For each cell encountered, we would have followed the inward pointer to the 

corresponding core cell and then used that core cell to construct the corresponding result record as above. 

One point that emerges right away from the foregoing is that stars might be better than zigzags for implementing projections. 

To be speciic, if the ile has M ields, then (in general) zigzags require M accesses to the Record Reconstruction Table for 

each result record no matter how many ields are requested, while stars require at most two (and oten only one). his 

fact makes stars attractive, because it’s quite rare in practice for a query to request all of the ields of the ile (or all of the 

attributes of the relation, rather). 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

233 

Stars and Zigzags

Here’s another sample query: 

SELECT DISTINCT P.P# 

FROM P

WHERE P.WEIGHT = 19.0 ; 

Here we do a binary search on column WEIGHT of the Field Values Table and determine that the records we want pass 

through cells [7,3] and [8,3] of the star table. hen we use the stars corresponding to those cells to construct the desired 

records. 

Before closing this section, I should draw your attention to one more point: namely, that a star table will always be bigger 

than its zigzag analog. Again suppose the ile has M ields. hen the zigzag table will have M pointers per record, but 

the star table will have 2(M-1)—so if M is large, the star table will be almost twice the size of the zigzag table. Note: I’m 

assuming here that M is greater than one. What happens if that assumption is invalid? 

14.3 Elaborating on the Example

Now let’s see what happens if we choose a ield other than one corresponding to some key as the core ield. Let’s choose ield 

WEIGHT. Fig. 14.6 shows what happens to the star for part P7 under this assumption; Fig. 14.7 shows the corresponding 

star table in its entirety. Observe that: 

a) he irst “subcolumn” within column WEIGHT of the star table of Fig. 14.7—the subcolumn for CC#, 

labeled c in the igure—is identical to column WEIGHT of the zigzag table of Fig. 14.1; 

b) Column PNAME of the star table of Fig. 14.7 is identical to column PNAME of the zigzag table of Fig. 14.1. 

Fig. 14.6: Star for part P7 (with WEIGHT the core)

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

234 

Stars and Zigzags

Fig. 14.7: Star table for the ile of Fig. 14.4 (with WEIGHT the core)

Observe too that (to spell out the obvious) the star tables of Figs. 14.5 and 14.7 are diferent. hus, while we might reasonably 

talk about “the” zigzag table for a given ile, we can’t sensibly talk about “the” star table for that same ile; instead, we have 

to talk about the star table that corresponds to the given ile together with some given core ield. 

Now I want to make another point. Suppose we use the star table of Fig. 14.7 to reconstruct the entire ile; suppose for 

deiniteness that we perform this process using column PNAME (that is, we traverse column PNAME of the star table 

top to bottom). Here’s the reconstruction process spelled out in detail: 

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your 

topic area. Find out what you can do to improve

the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50


Download free eBooks at bookboon.com

Go Faster!

235 

Stars and Zigzags

•	 From cell [1,2] of the star table, follow the spoke inward to the corresponding core cell [5,3]. 

•	 Go to the Field Values Table and extract the WEIGHT value in cell [5,3] (from Fig. 14.1, we see the value in 

question is 17.0). 

•	 Cell [5,3] of the star table contains the pointers 5, 2, and 1. Go to the Field Values Table and extract the 

CC# value in cell [5,4], the P# value in cell [2,1], and the PNAME value in cell [1,2]. hose values are cc2, 

P2, and Bolt, respectively, and we have now constructed the irst result record. Note: Alternatively, of course, 

we could have obtained the PNAME value (Bolt) in the irst step by going straight to cell [1,2] of the Field 

Values Table (since we started out with cell [1,2] of the star table in the irst place). 

Performing this sequence of steps eight more times but starting successive iterations with cells [2,2], [3,2], ..., [9,2] of the 

star table (for the second, third, ..., ninth record in the overall ile reconstruction process), we obtain the result shown 

in Fig. 14.8. hat result, as you can see by inspection (or by comparison with Fig. 13.1 in Chapter 13), consists of the 

original nine part records ordered by weight within name (more precisely, ordered by P# within CC# within WEIGHT 

within PNAME). In other words, the star table of Fig. 14.7 is a “preferred” one in the sense of Chapter 7. (So too is the 

star table of Fig. 14.5, as a matter of fact.) 

Fig. 14.8: Part records ordered by WEIGHT within PNAME

One last point to close this section: Consider, by way of example, cell [8,3] of the star table in Fig. 14.7. hat cell corresponds 

directly to cell [8,3] of the Field Values Table in Fig. 14.1, which contains the weight 19.0. hat same cell [8,3] in the star 

table contains the pointers 4, 7, and 6, which take us to cells [4,4], [7,1], and [6,2] of the Field Values Table, and those 

cells in turn contain the CC# value cc1, the part number P7, and the name Nut, respectively. In a sense, therefore, that star 

table cell [8,3] can be thought of, all by itself, as a digitized version of the entire record for part P73—its position within 

the star table efectively speciies one component of that record (the WEIGHT component), and its contents efectively 

specify the other three components (the CC#, P#, and PNAME components). Note: It’s relevant to mention once again 

that—as we irst saw in Chapter 5, Section 5.6—pointers to Field Values Table cells can usefully be thought of as surrogates 

for the ield values contained within those cells. 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

236 

Stars and Zigzags

14.4 What Happens on Disk

Now let’s drop the pretense that everything’s in memory and see how the ideas we’ve been discussing work out in a disk 

environment—by which I mean, primarily, an environment in which the star table is too big to be memory-resident. 

Note: It’s easier to talk in terms of just one star table at a time; in what follows, therefore, I’ll pretend there is indeed just 

one such table (barring explicit statements to the contrary), and I’ll refer to it as “the” star table. 

he irst point is that, in the case of the core column in particular, we’re probably going to want to extend the column-

wise storage idea to store each subcolumn of that column as an independent column in its own right. he reason is that 

(as we saw in Section 14.2) we usually don’t need to access all of those subcolumns in implementing any given query, and 

we certainly don’t want to read anything into memory that we don’t need, if we can help it. Fig. 14.9 shows the star table 

of Fig. 14.5—the one based on P# as the core ield—with the core column divided up into separate columns in this way. 

Note: he term subcolumn, which I’ve now used several times, is (I hope) self-explanatory. From this point forward, I’ll 

use the term core column to mean the combination of all pertinent subcolumns. 

Fig. 14.9: Star table of Fig. 14.5 with core column subdivided 

he table of Fig. 14.9 will be stored on disk as six separate columns, and the implementation will thus be able to go directly 

to the start of any of those stored columns at any time. What’s more, those six columns will also be stored in consecutive 

pages on the disk (the irst column in one set of pages, the second in the immediately following set, and so on), with a 

view to minimizing seek activity and allowing successive columns to be streamed into memory at run time. (Of course, 

it’s highly desirable for the pertinent core subcolumns to be in memory at run time—where by “pertinent” I mean the 

ones that are needed for any given query—even if the star table overall is too big to it into memory in its entirety.) 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

237 

Stars and Zigzags

So what’s good about this arrangement from a performance point of view? Well, it certainly means that pointers in any 

given column of the star table will be physically contiguous on the disk, with the implication that traversing such a column 

will be fast. And since these remarks apply to subcolumns of the core column in particular, it follows that doing record 

or ile reconstruction via the core column will not lead to the splay problem. What’s more, so long as the core column is 

in memory, doing reconstruction via any other column will be eicient too; but if the core column is too big to it into 

memory, then reconstruction via any other column still has the potential to be extremely ineicient. However, at least we 

don’t have to deal with “splayed zigzags” as such. 

So what can we do if the core column is too big to it into memory? One approach would be to use banding, more or less 

as described in the previous chapter. Banding, as you’ll recall, is a divide-and-conquer technique that works by dividing 

the ile up into horizontal subiles or bands such that (a) each band its into memory and (b) no pointing occurs between 

bands. Refer to Chapter 13 for further discussion of this possibility. he section immediately following describes a diferent 

approach to the same problem. 

14.5 Controlled Redundancy

We’ve seen that, in order to deine a star table, the irst thing we have to do is choose a core ield.4 Now, when we were 

discussing banding in Chapter 13, the choice of characteristic ield had major performance implications, because that 

choice efectively dictated the stored sort order for the ile. And the situation is similar (though not identical) with a star 

table and its core ield; again our choice can have major performance implications. To be more speciic, if we choose C as 

the core ield, then queries that involve access to the ile in sequence by values of C will be very eicient, but (as explained 

near the end of the previous section) queries that involve access in any other sequence might not be. 

he obvious solution to this problem is to introduce some form of controlled redundancy once again. I discussed 

controlled redundancy at some length in Chapter 13 (Section 13.5); most of the points I made there apply here too, and 

I won’t bother to repeat them all now. Let me just remind you yet again that the TR representation of a given data set 

typically requires only some 20 percent of the space required for a direct-image representation; as a result, we can aford 

to store the data up to ive diferent ways without taking up any more space than a conventional system would need (and 

that’s just for storing the raw data alone, in that conventional system). 

So let’s consider the question of redundancy in the context of star tables speciically. Clearly, the simplest thing to do is 

to store several diferent star tables for the same ile, each one based on a diferent core ield. For example, we could store 

both the star table of Fig. 14.5 (based on P#) and the star table of Fig. 14.7 (based on WEIGHT), and thereby achieve 

symmetric performance for access to parts based on P# and access to parts based on WEIGHT. 

An alternative approach would be to store just one star table but to expand that table to include, in addition to what I’ll 

now call the primary core column, a set of secondary core columns as well. Each such secondary core column will contain 

essentially the same information as the primary one, but sorted into a sequence that matches the sort sequence of some 

ield that’s not the (primary) core ield. 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

238 

Stars and Zigzags

To see how this idea works out in practice, let’s work through an example. Consider column WEIGHT in the star table of 

Fig. 14.9. As you can see, that column contains the following pointers (row numbers) in top-to-bottom sequence: 

1, 5, 4, 8, 2, 3, 6, 7, 9

his sequence is in fact the permutation that corresponds to the speciication ORDER BY WEIGHT, CC#, P#, PNAME; 

it means, for example, that record 8 of the ile—see Fig. 14.4—appears in position 4 in that ordering. It follows that if we 

were to process the core column of that same star table by taking the irst cell irst, the ith cell second, the fourth cell 

third, and so on, we would reconstruct a version of the ile that was in exactly that ordering. 

he trouble is, of course, that processing the core column in the way just indicated could lead to a lot of seek activity on 

the disk. So why not store another copy of that core column that’s rearranged into exactly the sequence we want? he 

result might look like this: 

5-1-1 

2-2-8 

7-3-2 

9-4-9 

1-5-5 

8-6-6 

3-7-3 

6-8-4 

4-9-7 

If such a column is added—redundantly, of course—to the star table of Fig. 14.5, we’ll be able to reconstruct the desired 

ile from that table in the desired order without all of that seek activity on the disk, precisely because that new column 

will be stored as a separate column in its own right on the disk. (Well, actually it’ll be stored as three separate columns, 

one for each subcolumn, but that detail need not concern us here.) 

But wait a moment ... Recall that within a given triple of pointers n-w-c in the primary core column, n is the name pointer, 

w is the weight pointer, and c is the CC# pointer. Clearly there’s no need to include the w pointers in the secondary core 

column, because the value of the w pointer in the ith cell will always simply be i (as you might have already noticed). 

hus, the inal version of the star table with both a primary core column and a secondary core column will look as shown 

in Fig. 14.10 (note the column labels 1n, 1w, etc.). 

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

239 

Stars and Zigzags

Fig. 14.10: Star table with primary (P#) and secondary (WEIGHT) cores 

Now suppose we want to reconstruct the part record passing through some particular cell in the WEIGHT column of 

the star table of Fig. 14.10—let’s say (arbitrarily) the fourth cell, which is still cell [4,3] according to the column labeling 

shown in the igure. he sequence of events is as follows. 

•	 Go to cell [4,3] of the Field Values Table of Fig. 14.1 and extract the value stored there (weight 15.0). 

By 2020, wind could provide one-tenth of our planet’s 

electricity needs. Already today, SKF’s innovative know-

how is crucial to running a large proportion of the 

world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-

nance. These can be reduced dramatically thanks to our 

systems for on-line condition monitoring and automatic 

lubrication. We help make it more economical to create 

cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 

industries can boost performance beyond expectations. 

Therefore we need the best employees who can 

meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering. 

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5


Download free eBooks at bookboon.com

Go Faster!

240 

Stars and Zigzags

•	 Cell [4,3] of the star table contains the row number 8, so the part number of the record we want is in cell 

[8,1] of the Field Values Table. Go and extract it (part number P8). 

•	 Within the secondary core column, go to the PNAME cell corresponding to WEIGHT cell [4,3]. hat 

PNAME cell is cell [4,3n], and it contains the row number 9. Go to cell [9,2] of the Field Values Table and 

extract the name (Wheel). 

•	 Within the secondary core column, go to the CC# cell corresponding to WEIGHT cell [4,3]. hat CC# cell 

is cell [4,3c], and it also contains the row number 9. Go to cell [9,4] of the Field Values Table and extract the 

CC# value (cc5). Record reconstruction is now complete. 

Here’s the storage arithmetic again. Suppose once again that the ile has M ields. hen: 

a) A zigzag table will have M pointers per record. 

b) A star table with a single core column will have 2(M-1) pointers per record. 

c) A star table with a primary core column and N secondary core columns will have 2(M-1) + N(M-2) pointers 

per record. 

Of course, Case b. is just that special case of Case c. in which N is zero. 

Endnotes

1. In fact the core ield is oten referred to as a characteristic ield. I’ll stay with the term core ield in this 

chapter. 

2. As in Chapter 10, “we” here really means the DBMS. 

3. Chambers Twentieth Century Dictionary deines digitize to mean “to put (data) into digital form for use in a 

digital computer.” 

4. It might be possible to automate that choice, but probably not if we introduce redundancy (which I’m about 

to do); in that case, human decisions are probably going to be needed. 

http://bookboon.com/

